Uniform large deviation principles of fractional stochastic reaction-diffusion equations on unbounded domains

نویسندگان

چکیده

This paper is concerned with uniform large deviation principles of fractional stochastic reaction-diffusion equations driven by additive noise defined on unbounded domains where the solution operator non-compact and hence result [32] does not apply. The nonlinear drift assumed to be locally Lipschitz continnous instead being globally continuous. We first prove a principle for linear equation weak convergence method, then show contraction principle, despite Sobolev embeddings are in domains. regrading deviations can applied investigate exit time place solutions from given domain phase space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Existence and Uniqueness of Invariant Measures for Stochastic Reaction–Diffusion Equations in Unbounded Domains

In this paper, we investigate the long-time behavior of stochastic reaction– diffusion equations of the type du = (Au + f (u))dt + σ(u)dW (t), where A is an elliptic operator, f and σ are nonlinear maps and W is an infinite-dimensional nuclear Wiener process.The emphasis is onunboundeddomains.Under the assumption that the nonlinear function f possesses certain dissipative properties, this equat...

متن کامل

pullback d-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

at present paper, we establish the existence of pullback $mathcal{d}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $l^2(mathbb{r}^n)times l^2(mathbb{r}^n)$. in order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{d}$-absorbing set, is pullback $widehat{d}_0$-asymptotically compact.

متن کامل

Large Deviation Theory for Stochastic Diierence Equations

The probability density for the solution yn of a stochastic di erence equation is considered. Following Knessl, Matkowsky, Schuss, and Tier [1] it is shown to satisfy a master equation, which is solved asymptotically for large values of the index n. The method is illustrated by deriving the large deviation results for a sum of independent identically distributed random variables and for the joi...

متن کامل

2 00 6 Fractional Reaction - Diffusion Equations

In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2023

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2023020